JJMICROELECTRONICS

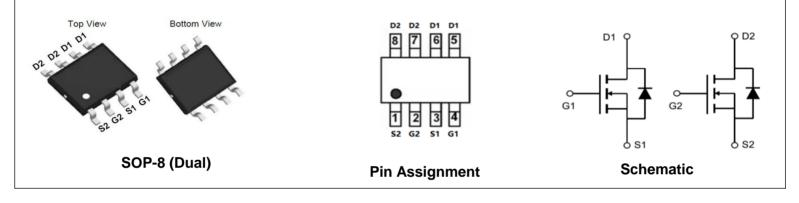
60V, 5A, $32m\Omega$ N-channel Power Trench MOSFET

JMTP330N06D

Features

- Excellent $R_{\text{DS}(\text{ON})}$ and Low Gate Charge
- 100% UIS TESTED
- Halogen-free; RoHS-compliant
- Pb-free plating

Applications


- Load Switch
- PWM Application
- Power Management

Product Summary

Parameters	Value	Unit
V _{DSS}	60	V
V _{GS(th)_Typ}	1.6	V
I _D (@V _{GS} =10V)	5	А
R _{DS(ON)_Typ} (@V _{GS} =10V	28	mΩ
$R_{DS(ON)_Typ}$ (@V _{GS} =4.5V	32	mΩ

Ordering Information

Device	Marking	MSL	Form	Package	Reel(pcs)	Per Carton (pcs)
JMTP330N06D	33N06D	3	Tape&Reel	SOP-8	4000	48000

Absolute Maximum Ratings (@ $T_A = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter		Value	Unit	
V _{DS}	Drain-to-Source Voltage		60	V	
V_{GS}	Gate-to-Source Voltage		±20	V	
1_		$T_A = 25^{\circ}C$	5	А	
٦D		$T_A = 100^{\circ}C$	4	A	
I _{DM}	Pulsed Drain Current ⁽¹⁾		Refer to Fig.4	A	
E _{AS}	Single Pulsed Avalanche Energy ⁽²⁾		31	mJ	
P _D	Power Dissipation	$T_A = 25^{\circ}C$	1.4	W	
۰D		$T_{A} = 100^{\circ}C$	0.6	vv	
T _J , T _{STG}	Junction & Storage Temperature Range		-55 to 150	°C	

Thermal Characteristics

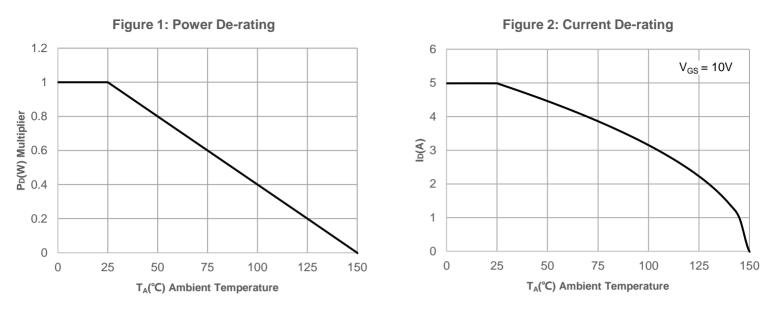
Symbol	Parameter	Мах	Unit
R _{θJA}	Thermal Resistance, Junction to Ambient ⁽³⁾	124	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient ⁽⁴⁾	91	C/VV

					-	-
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Off Cha	aracteristics					
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	60	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 60V, V_{GS} = 0V$	-	-	1.0	μA
I _{GSS}	Gate-Body Leakage Current	$V_{DS} = 0V, V_{GS} = \pm 20V$	-	-	±100	nA
On Cha	racteristics			•		
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1.0	1.6	2.5	V
D		$V_{GS} = 10V, I_D = 5A$	-	28	38	mΩ
R _{DS(ON)}	Static Drain-Source ON-Resistance ⁽⁵⁾	$V_{GS} = 4.5V, I_{D} = 3A$	-	32	47	mΩ
Dynami	ic Characteristics					
R_g	Gate Resistance	f = 1MHz	-	2	-	Ω
C _{iss}	Input Capacitance		-	743	-	pF
C _{oss}	Output Capacitance	$V_{GS} = 0V, V_{DS} = 30V,$ f = 1MHz	-	126	-	pF
C _{rss}	Reverse Transfer Capacitance		-	50	-	pF
Qg	Total Gate Charge		-	24	-	nC
Q _{gs}	Gate Source Charge	$V_{GS} = 0 \text{ to } 4.5V$ $V_{DS} = 30V, I_D = 5A$	-	4	-	nC
Q_{gd}	Gate Drain("Miller") Charge		-	4	-	nC
	•					
Switchi	ing Characteristics		F	T	I	
t _{d(on)}	Turn-On DelayTime		-	8	-	ns
t _r	Turn-On Rise Time	$V_{GS} = 10V, V_{DD} = 30V$	-	29	-	ns
t _{d(off)}	Turn-Off DelayTime	$I_D = 5A, R_{GEN} = 3\Omega$	-	32	-	ns
t _f	Turn-Off Fall Time		-	2	-	ns
Body D	iode Characteristics				-	
I _S	Maximum Continuous Body Diode Forward Current		-	-	5	А
I _{SM}	Maximum Pulsed Body Diode Forward Current		-	-	20	А
$V_{\rm SD}$	Body Diode Forward Voltage	$V_{GS} = 0V, I_{S} = 5A$	-		1.2	V
trr	Body Diode Reverse Recovery Time	1 - 50 di/dt - 1000/mc	-	24	-	ns
Qrr	Body Diode Reverse Recovery Charge	I _F = 5A, di/dt = 100A/us	-	22	-	nC

Electrical Characteristics ($T_J = 25^{\circ}C$ unless otherwise specified)

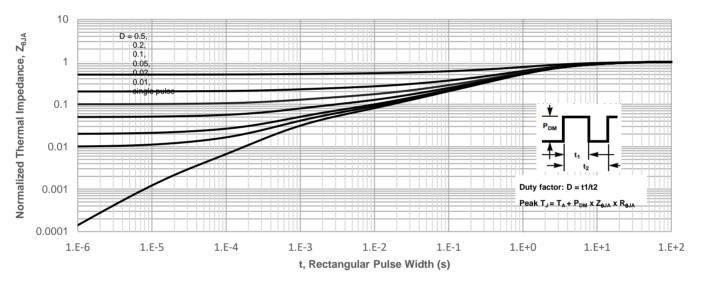
Notes: 1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature.

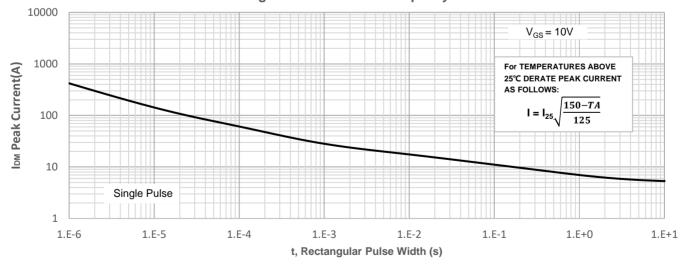
 $2. \ E_{AS} \ condition: \ Starting \ T_J=25C, \ V_{DD}=30V, \ V_G=10V, \ R_G=25ohm, \ L=0.5mH, \ I_{AS}=9.1A, \ V_{DD}=0V \ during \ time \ in \ avalanche.$


3. $R_{\theta JA}$ is measured with the device mounted on a minimum recommended pad of 2oz copper FR4 PCB.

4. $R_{\theta JA}$ is measured with the device mounted on a 1inch² pad of 2oz copper FR4 PCB.

5. Pulse Test: Pulse Width ${\leqslant}300\mu s,$ Duty Cycle ${\leqslant}0.5\%.$





Typical Performance Characteristics

Figure 4: Peak Current Capacity

Typical Performance Characteristics

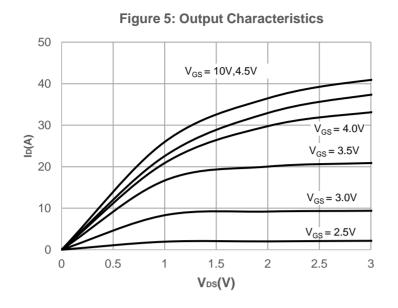
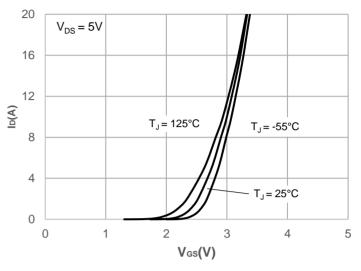



Figure 6: Typical Transfer Characteristics

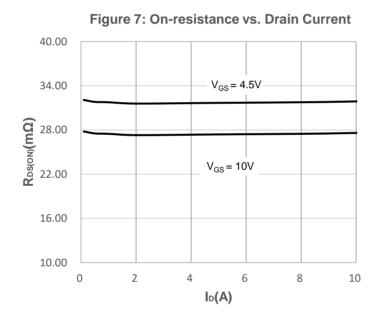
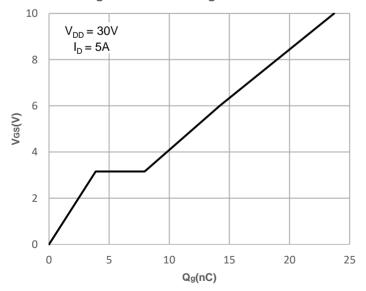
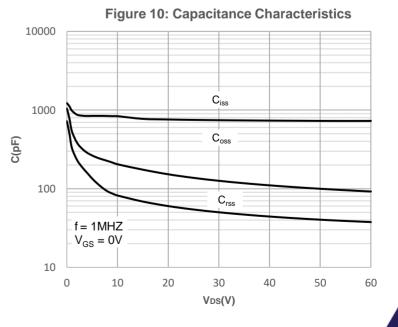




Figure 9: Gate Charge Characteristics

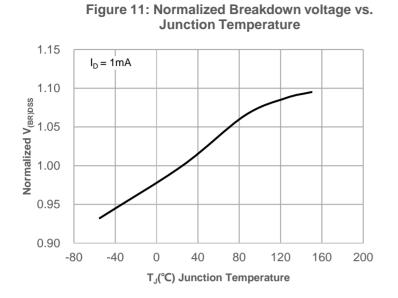
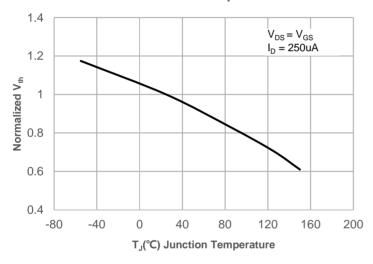
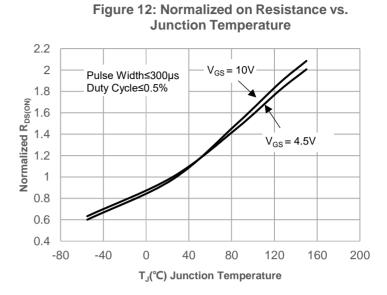
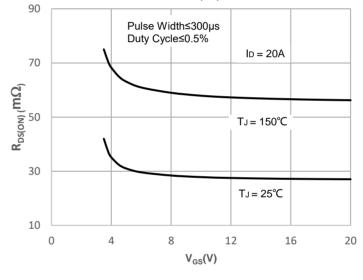


Figure 8: Body Diode Characteristics 100 $V_{GS} = 0V$ 10 Is(A) 1 T_J = 125°C T_J=-55°C 0.1 T_J= 25°C 0.01 0 0.2 0.4 0.6 0.8 1 1.2 Vsd(V)




Typical Performance Characteristics



Test Circuit

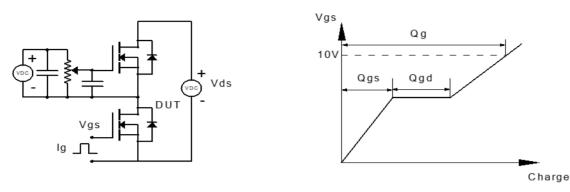


Figure 1: Gate Charge Test Circuit & Waveform

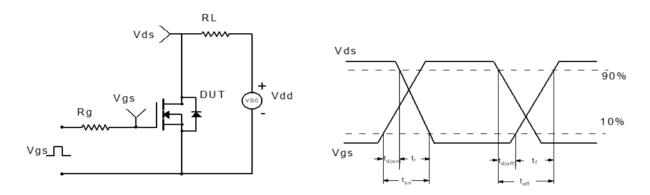


Figure 2: Resistive Switching Test Circuit & Waveform

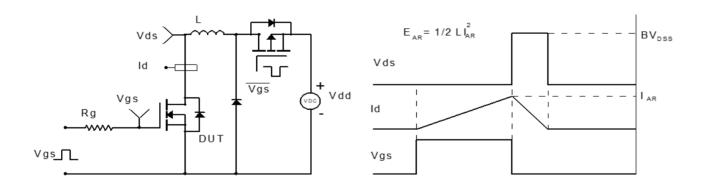


Figure 3: Unclamped Inductive Switching Test Circuit& Waveform

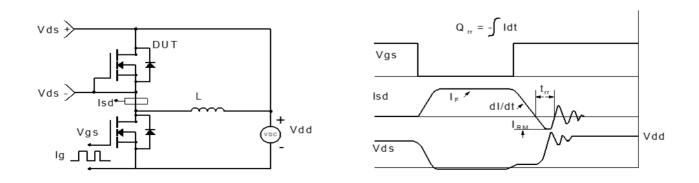
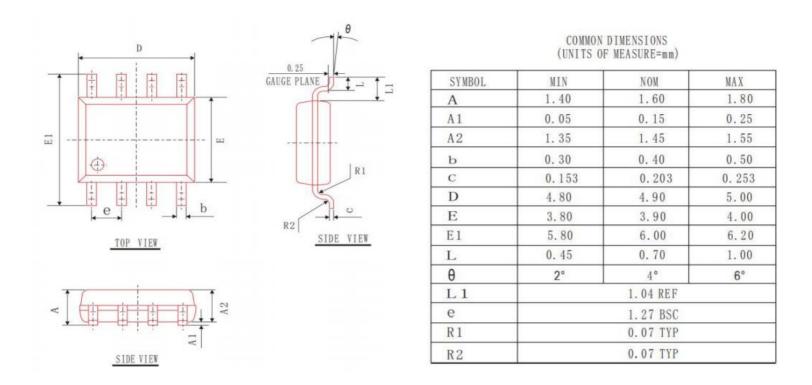



Figure 4: Diode Recovery Test Circuit & Waveform

Package Mechanical Data-SOP-8

Information furnished in this document is believed to be accurate and reliable. However, Jiangsu JieJie Microelectronics Co.,Ltd assumes no responsibility for the consequences of use without consideration for such information nor use beyond it. Information mentioned in this document is subject to change without notice, apart from that when an agreement is signed, Jiangsu JieJie complies with the agreement. Products and information provided in this document have no infringement of patents. Jiangsu JieJie assumes no responsibility for any infringement of other rights of third parties which may result from the use of such products and information.

is a registered trademark of Jiangsu JieJie Microelectronics Co.,Ltd.

